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Introduction 
– What is heat integration? 
– Common applications 
– Impact on relief systems 

 Case studies 
– Crude Fractionator with preheat train 
– FCC Fractionator with gas plant integration 

Conclusion 
Questions 

Overview 



• Process of utilizing energy already present in a 
system to minimize the utility consumption 
 

• Becoming a more common practice in process 
optimization for both new and existing facilities 

What is heat integration? 
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Figure 1 – Example of process prior to heat integration 
 



Figure 2 – Example of similar process after heat 
integration 

 



• Required relief loads are the imbalance of mass 
and/or heat 

• Ignoring how heat is integrated artificially creates 
a heat imbalance 

• This imbalance could result in over-predicting or 
under-predicting relief loads 

• This could then result in unnecessary spending 
or unsafe design 

Impact on Relief Systems 



• Engineers are generally cautious about taking 
credits for what gives positive results 

• It is important to recognize the physical limitations 
of the system 

• By understanding the true limitations of a system, 
one can maintain conservatism while producing 
positive, more realistic results 

Staying Conservative 



• Refinery heat integration project aimed to 
increase feed temperature to crude fractionator 

• A partial power failure scenario resulted in loss of 
pump-arounds with continued feed 

• Initial relief calculations assumed normal tower 
feed temperature, and inadequate relief capacity 

• Installing additional relief capacity with 
subsequent flare modifications was enough to 
warrant cancelling project 

Case Study 1 



Figure 3 – Crude 
fractionator with 

preheat train 



Figure 3 – Crude 
fractionator with 

preheat train 



• Relief load is due to more heat input than heat 
removal; however,  

– Heat removal comes from pump-around 
preheat exchangers 

– Heat input comes from feed furnace AND 
preheat exchangers 

• The only valid heat input comes from feed 
furnace and preheat exchangers not associated 
with column pump-arounds 

Considerations 



Figure 3 – Crude 
fractionator with 

preheat train 



Preheat Exchangers 
– Not all the preheat exchangers are from the Crude 

Tower pump-arounds 
– The other exchangers will have higher duties than 

normal, as the temperature difference increases 
– Use the UA ∆T to determine max duty at relief 

conditions 
Feed furnace 

– Fuel gas to furnace will increase in attempt to maintain 
constant temperature 

– The max duty is determined by burner limitation with 
efficiency of furnace 

Considerations Cont’d 



Case 1 Results 

Case E-1, E-2, E-4, E-5 E-4, E-6 H-1 Total 
Normal 214 75 236 525 
Relief 0 152 318 470 

Difference - 214 + 77 + 82 - 55 

Table 1 – Comparison between normal and relief duties when 
accounting for heat integration (MMBtu/hr) 

Table 2 – Required relief load with and without heat integration 

Case  
Tower Feed Temp 

(oF) 
Required Relief 

(lb/hr) 
Without considering heat 
integration 680 719,900 

Considering heat 
integration 610 622,800 



• Refinery was working to resolve concerns 
associated with flare radiation 
 

• System in question is Fluidized Catalytic 
Cracking (FCC) fractionator with its pump-around 
exchangers fully integrated with distillation 
column reboilers in Gas Con unit 

Case Study 2 



Figure 4 – FCCU and Gas Con Integrated Exchangers 

 
 



• Previous analysis used loads generated from 
individual relief systems reports that didn’t 
account for heat integration 

Case Study 2 Cont’d 

Valves Location Load (lb/hr) 
PSV’s A FCCU Fractionator 454,123 
PSV’s B Gas Con De-Propanizer 151,400 
PSV’s C Gas Con De-Butanizer 433,700 
PSV’s D Gas Con De-Isobutanizer 148,900 

Total FCCU and Gas Con 1,188,123 

Table 3 - Load summary prior to heat integration analysis 
 
 
 



• Because most pumps are set up with a spare 
(some steam driven), the pump in question may 
or may not fail   
 

• The conservative assumption of which is spare at 
the time of the power failure is made for sizing 
each individual system 
 

• For analyzing the flare, the sizing loads from the 
individual systems are not additive 

Considerations 



Figure 4 – FCCU and Gas Con Integrated Exchangers 

 
 



Figure 4 – FCCU and Gas Con Integrated Exchangers 

 
 



• During a power failure, the loads from the FCCU 
and Gas Con cannot both relieve 

• Note that one case results in a worse result for 
radiation study, while the other case is worse for 
the subheader 

 

Case 2 Results 

Table 4 - Load summary after heat integration accounted for 
 
 
 

Valves Location Case 1 Load 
(lb/hr) 

Case 2 Load 
(lb/hr) 

PSV’s A FCCU Fractionator 454,123 0 
PSV’s B Gas Con De-Propanizer 0 151,400 
PSV’s C Gas Con De-Butanizer 0 433,700 
PSV’s D Gas Con De-Isobutanizer 0 148,900 

Total FCCU and Gas Con 454,123 734,000 



• Understanding how heat is integrated is 
important in analyzing relief systems 

• One can avoid over-predicting relief loads that 
can have significant financial impact 

• One can avoid under-predicting relief loads that 
can make a system unsafe 

• Accounting for limitations due to heat integration 
does not require significant time or rigorous 
modeling software 

• Save time, save money, save lives 

Conclusion 



 
 

Questions? 
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