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1. An inherent part of process 
design is overpressure protection 

2. A known issue associated with 
overpressure protection is the 
behavior of relieved fluid in the 
region of the critical point 

3. Why? 
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API Vapor Capacity 
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API Vapor Capacity 
 
 
 
 
Where 
k = ratio of ideal heat capacities = Cp/Cv 
Used as an approximation of the 
isentropic expansion coefficient 
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API Vapor Capacity 
 
 
 
 
Where 
k = ratio of ideal heat capacities = Cp/Cv 
Used as an approximation of the 
isentropic expansion coefficient 
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Isentropic Expansion Coefficient 
 
 
Where 
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5.6.1 Applicability 
The sizing equations for pressure relief devices 
in vapor or gas service provided in this section 
assume that the pressure-specific volume 
relationship along an isentropic path is well 
described by the expansion relation, 
 PVk = constant 
where 
 k is the ideal gas specific heat ratio at 
the relieving temperature. 
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5.6.1 Applicability (continued) 
Years of experience with this basis indicates that 
this approach has provided satisfactory results over 
a wide range of conditions.  However, the validity 
of the assumption may diminish at very high 
pressures or as the vapor or gas approaches the 
thermodynamic critical locus. One indicator that 
the vapor or gas may be in one of these regions is a 
compressibility factor, Z, less than approximately 
0.8, or greater than approximately 1.1. To ensure 
the most appropriate sizing results, users should 
establish the limits of applicability for their own 
systems. 
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Thermodynamic Properties 
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Chemical Tc [°F] Pc [psig] 

Ethane 90 708 
Ethylene 48.6 731 
Propane 206 616 
Propylene 197 667 



Isentropic Expansion Coefficient of Ethylene at constant temperatures 
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Modeling the pressure volume relationship 
1. As the slope of the isentropic expansion 

coefficient increases, the validity of the 
nozzle equation assumption decreases 

2. For supercritical fluids the conventional 
approach is to use API Vapor Sizing 
equations with the isentropic expansion 
coefficient. 

3. When this method is not sufficient, 
need to use a sizing method that can 
account for the pressure-volume 
relation over the expansion. 
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Direct Integration Method 
 
 
 
Where 
 
 
 
 
Capacity is estimated by: 
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Capacity Estimation Comparison 
1. A 2×J×3 relief device used 

A = 1.287 in² 
2. Pressures were varied between 
 250 to 2500 psig 
3. Temperatures were varied between 
 50 ant 350 °F 
4. Calculations peformed on Ethane, 

Ethylene, Propane and Propene 
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Pressure Ethalpy Diagram of Ethylene with test cases plotted 
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Predicted Capacity verses Reduced Pressure 
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Predicted Capacity verses Reduced Volume 
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%Deviation verses Z 
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% Deviation verses Reduced Temperature 
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Percent Deviation verses reduced volume 
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Capacity Estimation Comparison 
1. At reduced volumes greater than 2, the 

variation between methods is small 
1. Between 1 and 3% for the ideal vapor k 
2. Less than 1% for isentropic expansion 

coefficient 

2. At reduced volumes less an 2, the 
deviation from the direct integration 
method increases rapidly 

3. While in all cases in this comparison, the 
Z is less then 0.85, knowledge of the 
pressure volume relationship is 
imperative to accurately predict capacity 
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Joule Thompson Coefficient 

High Pressure Operations 
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Joule Thompson Coefficient 
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Joule Thompson Coefficient 
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1. At reduced volumes greater than 2, the variation between 
methods is small 

1. Between 1 and 3% for the ideal vapor k 
2. Less than 1% for isentropic expansion coefficient 

2. At reduced volumes less an 2, the deviation from the 
direct integration method increases rapidly 

3. While in all cases in this comparison, the Z is less then 
0.85, knowledge of the pressure volume relationship is 
imperative to accurately predict capacity 

4. High pressure/temperature operations can lead to 
polymerization or decomposition 

5. Very low temperatures can occur both in the vessels or 
the effluent piping upon depressurization 

Conclusions  
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