# -////

# **Relief Device Stability Screening**

#### For Spring Loaded API STD 526 Valves

Dustin Smith, P.E. Craig Powers, PhD



Process Safety Consulting



Semi-Validated Method from Literature

# AGENDA

- Introduction
- Background
- Goals of the screening method
- Methodology
- Sample problems
- Review compared to known data
- Recommendations for any future work
- Discussion





Semi-Validated Method from Literature

# INTRODUCTION

#### **Dustin Smith P.E.**

PRINCIPAL ENGINEER SMITH & BURGESS PROCESS SAFETY CONSULTING

#### **Craig Powers PhD**

Senior Engineer SMITH & BURGESS PROCESS SAFETY CONSULTING





# **BACKGROUND - Problem**

- There are known chatter incidents that resulted in a "loss of containment"
- Relatively rare occurrence
- Industry // regulatory difference of opinion on "Relaxing" the 3% rule

Historically, un-managed (or studied) change leads to increased problems





# GOAL OF THE SCREENING METHODOLOGY

- 1. Focused on vapor / gas systems
- 2. Categorize installations into two buckets
  - Free from chatter
  - May chatter
- 3. Equations that can be done by hand
- 4. Relies on minimal valve specific information
- 5. All criteria must be passed

The methodology does not predict chatter intensity, or frequency





# **Methodology Basis**

- Based on known work
  - 80's ASME / EPRI Research
  - 99-02 Research (From Germany)
- Validated (to date)
  - Published API Perf Data
  - Zahorsky's ASME/ EPRI Data





#### **Mechanisms of Chatter – Literature Review**

- 1. Inlet line length
- 2. Excessive inlet pressure losses
- 3. Standing waves
- 4. Oversized relief devices
- 5. Improper relief device installation

All criteria <u>must</u> be met to be considered acceptable





# **Inlet Line Length – Literature Review**

- 1. Theory
  - 1. Valve opens
  - 2. Reduced pressure area forms
  - 3. Pressure wave travels to some point
  - 4. Gets reflected back and "Supports" the disk
- 2. Published equation basis (Source 9)

$$t_{open} > \frac{2L}{c}; \quad \Delta P \leq \frac{2t_{wave}}{t_{open}}; \quad L_{Allowable} = f\left(\Delta P_{Chosen}, t_{open}\right)$$





# **Inlet Line Length - Various Equations**

1. Direct solution of the basis equation

$$L < 111.5t_{open}\sqrt{\frac{kT}{MW}}; \quad t_{open} > \frac{2L}{c}; \quad c = 223\sqrt{\frac{kT}{MW}}$$

2. Frommann & Friedel (1998, Source 6)

$$L_{i} < 9,078 \frac{d_{i}^{2}}{W_{\% O}} (P_{s} - P_{B}) t_{o}$$

Assumes a 20% sudden pressure loss is acceptable





# **Inlet Line Length - Various Equations**

3. Frommann & Friedel (1998, Source 6)

$$L_{i} < 45,390 \frac{d_{i}^{2}}{W_{\%0}} \left(\frac{P_{s} - P_{rc}}{P_{s}}\right) \left(P_{s} - P_{B}\right) t_{o}$$

Assumes sudden pressure loss is limited by blowdown

4. Cremers, Friedel, Pallaks (2001, Source 9)

My implementation was not substantiated by the 99-05 PERF PRV Stability Project





#### **Inlet Pressure Losses- Literature Review**

- 1. Theory (EPRI / ASME)
  - 1. Valve opens
  - 2. Pressure develops (both acoustic and frictional)
  - 3. Valve closes (repeat)
- 2. Published equations (Source 32)

$$P_{S} - P_{RC} > \Delta P_{Total} = \Delta P_{Frictional} + \Delta P_{Acoustic}$$

$$\Delta P_{Acoustic} = \frac{Lw_{PSV}}{12.6d_i^2 t_o} + \frac{1}{10.5\rho} \left(\frac{w_{PSV}L}{cd_i t_o}\right)^2$$





Semi-Validated Method from Literature

# **Standing Waves - Literature Review**

- 1. Theory
  - 1. High process flow velocity
  - 2. Vortex Shedding occurs at the tie-in point
  - 3. Standing waves form
- 2. Published equations (Source 10)





It has been speculated that Helmholtz resonance may occur (34) but generally is not considered to cause destructive chatter (35, 36).





## **Oversized relief devices**

- Conventional wisdom concern when the capacity is less than 25% (Sources 22, 29)
- 2. Valve operation
  - 1. Pressure in vessel increases
  - 2. Valve opens, capacity depends on inlet/outlet conditions
  - 3. If flow to vessel is more than capacity pressure increases if not it decreases.
  - 4. Cycle time related to flow and volume (not only rate)





# **Oversized relief devices**

- 1. If destructive chatter was caused by oversize devices:
  - 1. Problem would be extensive
  - 2. No solution
- 2. High frequency chatter > 1 hz (per manufacturers)

$$w_{PSV} > 4w_{required}$$

And,

$$1 > t_{cycle} = t_{P_{Blowdown} \to P_{Set}} + t_{P_{set} \to P_{Blowdown}}$$





# **Installation Guidelines**

- 1. No inlet restrictions [UG-135(b)(1), Source 15]
- No outlet restrictions / backpressure issues (Sources, 3, 9, 12, 23, 25)
- 3. Balanced Bellows vents open (Source 24)
- 4. Pocketed outlet piping (Source 1)





# **Supporting Equations // Assumptions**

1. Relief valve opening time [Source 9]

$$t_{o} \approx \left(0.015 + 0.02 \frac{\sqrt{2d_{PSVi}}}{\left(P_{s}/P_{ATM}\right)^{2/3} \left(1 - P_{ATM}/P_{s}\right)^{2}}\right) \left(\frac{h}{h_{\text{max}}}\right)^{0.7}$$







Semi-Validated Method from Literature





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 1.1 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Tag         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
| < | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 | > |
|   | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 |   |

$$L < 111.5t_{0}\sqrt{\frac{kT}{MW}} < 111.5 \left[ \left( 0.015 + 0.02 \frac{\sqrt{2d_{PSVi}}}{(P_{s}/P_{ATM})^{2/3}(1 - P_{ATM}/P_{s})^{2}} \right) \left(\frac{h}{h_{max}}\right)^{0.7} \right] \sqrt{\frac{kT}{MW}} \\ L < 111.5 \left[ \left( 0.015 + 0.02 \frac{\sqrt{2 \times 2.1}}{(64.7/14.7)^{2/3}(1 - 14.7/64.7)^{2}} \right) (0.6)^{0.7} \right] \sqrt{\frac{1.4(85 + 460)}{28.8}} \\ L < 111.5 \left[ 0.028 \right] \sqrt{\frac{1.4(545)}{28}} < 16.1 ft$$



Semi-Validated Method from Literature

# **Sample Problems** (Criteria 1.1 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Тад         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
|   | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 |   |
| < | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 | > |

$$L < 111.5 \left( 0.015 + 0.02 \frac{\sqrt{2d_{PSVi}}}{(P_s/P_{ATM})^{2/3} (1 - P_{ATM}/P_s)^2} \right) \left(\frac{h}{h_{max}}\right)^{0.7} \sqrt{\frac{kT}{MW}}$$

$$L < 111.5 \left( 0.015 + 0.02 \frac{\sqrt{2 \times 0.957}}{(264.7/14.7)^{2/3} (1 - 14.7/264.7)^2} \right) (0.6)^{0.7} \sqrt{\frac{1.4(85 + 460)}{28.8}}$$

$$L < 111.5 (0.014) \sqrt{\frac{1.4(545)}{28.8}} < 8.0 ft$$



Semi-Validated Method from Literature

# **Sample Problems** (Criteria 1.2 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Tag         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | <u>(PSIG)</u>    | (PSIG)            | (°F)               | MW   |   |
| < | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 | > |
|   | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 |   |

$$L_i < 9,078 \frac{d_i^2}{w_{\%0}} \left(P_s - P_B\right) t_o < 9,078 \frac{2.1^2}{7,060 \times 0.6} \left(50 - 4\right) 0.028$$

*L* < 12.2 *ft* 





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 1.2 – Line Length)

|   |             | PSV      |           | Inlet |                  |                   |                    |        |   |
|---|-------------|----------|-----------|-------|------------------|-------------------|--------------------|--------|---|
|   | Tag         | Capacity | Initial   | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> | N/1\A/ |   |
|   | Number      |          | LIIL (70) | (11)  | (PSIG)           | (PSIG)            | (                  |        |   |
|   | PSV-3 (2J3) | 7,060    | 60%       | 2     | 50.0             | 4                 | 85                 | 28.8   |   |
| < | PSV-8 (1E2) | 4,470    | 60%       | 2     | 250.0            | 20                | 85                 | 28.8   | > |

$$L_i < 9,078 \frac{d_i^2}{w_{\%0}} \left(P_s - P_B\right) t_o < 9,078 \frac{0.957^2}{4,470 \times 0.6} \left(250 - 20\right) 0.014$$

L < 10 ft





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 1.3 – Line Length)

|             | PSV      |          | Inlet |                  |                   |                    |      |   |
|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
| Тад         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
| Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
| PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 | > |
| PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 |   |

$$L_{i} < 45,390 \frac{d_{i}^{2}}{w_{\%0}} \left(\frac{P_{s} - P_{rc}}{P_{s}}\right) (P_{s} - P_{B}) t_{o} < 45,390 \frac{2.1^{2}}{7,060 \times 0.6} (0.08) (50 - 4) 0.028$$
  
Where,  $blowdown = \left(\frac{P_{s} - P_{rc}}{P_{s}}\right) = 8\%$   
 $L < 4.9 ft$ 





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 1.3 – Line Length)

|             | PSV      |          | Inlet |                  |                   |                    |      |   |
|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
| Tag         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
| Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
| PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 |   |
| PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 | > |

$$L_i < 45,390 \frac{d_i^2}{w_{\%0}} \left(\frac{P_s - P_{rc}}{P_s}\right) \left(P_s - P_B\right) t_o < 45,390 \frac{0.957^2}{4,470 \times 0.6} (0.025) (250 - 20) 0.014$$

L < 1.25 ft





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 2 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Tag         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
| < | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 | > |
|   | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 |   |

$$P_{S} - P_{RC} > \Delta P_{Total} = \Delta P_{Frictional} + \Delta P_{Accustic}, \quad \Delta P_{Accustic} = \frac{Lw_{PSV}}{12.6d_{i}^{2}t_{O}} + \frac{1}{10.5\rho} \left(\frac{w_{PSV}L}{cd_{i}t_{O}}\right)^{2}$$

$$C = 223\sqrt{\frac{kT}{MW}} = 223\sqrt{\frac{1.4(85+460)}{28.8}} = 1150\frac{ft}{s}, \quad \rho = \frac{P_{Set}MW}{RT} = \frac{64.7 \times 28.8}{10.73 \times 545} = 0.32\frac{lb}{ft^3}$$

$$\Delta P_{Accustic} = \frac{2 \times 1.17}{12.6 \times 2.1^2 \times 0.028} + \frac{1}{10.5 \times 0.32} \left(\frac{1.17 \times 2}{1,150 \times 2.1 \times 0.028}\right)^2, w_{PSV} = \left(\frac{7,060 \times 0.6}{3,600}\right) = 1.17 \frac{lb}{s}$$



Semi-Validated Method from Literature

#### **Sample Problems** (Criteria 2 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Tag         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
| < | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 | > |
|   | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 |   |

$$\Delta P_{Accustic} = \frac{Lw_{PSV}}{12.6d_i^2 t_o} + \frac{1}{10.5\rho} \left(\frac{w_{PSV}L}{cd_i t_o}\right)^2 = 2.512 + 0.00036 = 2.5\,psi, \quad \Delta P_{Friction} = 5.1\,psi\,(measured)$$

 $P_{S} \times BD = P_{S} - P_{RC} > \Delta P_{Total} = \Delta P_{Frictional} + \Delta P_{Accustic}, \quad 50 \times 0.08 > 5.1 + 2.5$ 

 $P_{S} \times BD > \Delta P_{Frictional} + \Delta P_{Accustic}, 9 \ psi > 7.6 \ psi$ 





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 2 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |  |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|--|
|   | Тад         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |  |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |  |
|   | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 |  |
| < | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 |  |

$$P_{S} - P_{RC} > \Delta P_{Total} = \Delta P_{Frictional} + \Delta P_{Accustic}, \quad \Delta P_{Accustic} = \frac{Lw_{PSV}}{12.6d_{i}^{2}t_{o}} + \frac{1}{10.5\rho} \left(\frac{w_{PSV}L}{cd_{i}t_{o}}\right)^{2}$$

$$C = 223\sqrt{\frac{kT}{MW}} = 223\sqrt{\frac{1.4(85+460)}{28.8}} = 1150\frac{ft}{s}, \quad \rho = \frac{P_{Set}MW}{RT} = \frac{264.7 \times 28.8}{10.73 \times 545} = 1.3\frac{lb}{ft^3}$$

$$\Delta P_{Accustic} = \frac{2 \times 0.745}{12.6 \times 0.92^2 \times 0.014} + \frac{1}{10.5 \times 1.3} \left( \frac{0.745 \times 2}{1,150 \times 0.96 \times 0.014} \right)^2, \\ w_{PSV} = \left( \frac{4,470 \times 0.6}{3,600} \right) = 0.745 \frac{lb}{s}$$



Semi-Validated Method from Literature

# **Sample Problems** (Criteria 2 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Тад         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
|   | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 |   |
| < | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 | > |

$$\Delta P_{Accustic} = \frac{Lw_{PSV}}{12.6d_i^2 t_o} + \frac{1}{10.5\rho} \left(\frac{w_{PSV}L}{cd_i t_o}\right)^2 = 15.37 + 0.001 = 15.4 \, psi, \quad \Delta P_{Friction} = 22.5 \, psi \, (measured)$$

 $P_{S} \times BD = P_{S} - P_{RC} > \Delta P_{Total} = \Delta P_{Frictional} + \Delta P_{Accustic}, \quad 250 \times 0.025 > 15.4 + 22.5$ 

 $P_{S} \times BD > \Delta P_{Frictional} + \Delta P_{Accustic}, \quad 31.3 \ psi > 37.9 \ psi$ 





Semi-Validated Method from Literature

# **Sample Problems** (Criteria 2 – Line Length)

|   |             | PSV      |          | Inlet |                  |                   |                    |      |   |
|---|-------------|----------|----------|-------|------------------|-------------------|--------------------|------|---|
|   | Тад         | Capacity | Initial  | Pipng | P <sub>Set</sub> | P <sub>Back</sub> | T <sub>inlet</sub> |      |   |
|   | Number      | (lb/hr)  | Lift (%) | (ft)  | (PSIG)           | (PSIG)            | (°F)               | MW   |   |
|   | PSV-3 (2J3) | 7,060    | 60%      | 2     | 50.0             | 4                 | 85                 | 28.8 |   |
| < | PSV-8 (1E2) | 4,470    | 60%      | 2     | 250.0            | 20                | 85                 | 28.8 | > |

$$\Delta P_{Accustic} = \frac{Lw_{PSV}}{12.6d_i^2 t_o} + \frac{1}{10.5\rho} \left(\frac{w_{PSV}L}{cd_i t_o}\right)^2 = 15.37 + 0.001 = 15.4 \, psi, \quad \Delta P_{Friction} = 22.5 \, psi \, (measured)$$

 $P_{S} \times BD = P_{S} - P_{RC} > \Delta P_{Total} = \Delta P_{Frictional} + \Delta P_{Accustic}, \quad 250 \times 0.025 > 15.4 + 22.5$ 

 $P_{S} \times BD > \Delta P_{Frictional} + \Delta P_{Accustic}$ , 31.3 psi > 37.9 psi





Semi-Validated Method from Literature



1. Equations 1.1 and 1.2 are "optimistic"

$$L < 111.5t_{open} \sqrt{\frac{kT}{MW}}, Eq \, 1.1; L_i < 9,078 \frac{d_i^2}{w_{\%0}} (P_s - P_B) t_o, Eq \, 1.2$$

- 2. Eq. 1.3 is most "accurate"  $L_i < 45,390 \frac{d_i^2}{w_{\%0}} \left( \frac{P_s P_{rc}}{P_s} \right) (P_s P_B) t_o$
- 3. Eq. 2.0 (Acoustic & Friction  $\Delta P$ ) conservative



#### **Experimental Validation**

Comparison to API PERF Study (Source 15)

| Model                  | PERF       | Model      | Eq. 1.3 | Eq. 2.0 | No. Of |
|------------------------|------------|------------|---------|---------|--------|
| Correlation            | Results    | Prediction |         |         | Cases  |
| Agreement              | Chatter    | Chatter    | 9       | 9       | 9      |
| Agreement              | Stable     | Stable     | 26      | 14      | 14     |
| False Negative         | Chatter    | Stable     | 0       | 0       | 0      |
| False Positive         | Stable     | Chatter    | 12      | 24      | 24     |
| Agreement <sup>1</sup> | Not Tested | Chatter    | 7       | 7       | 7      |
|                        | 74 (78)    | 49 (       | (56)    |         |        |

**Note 1:** There are a number of cases that were not tested, but were assumed to chatter as the reason for not being tested was not included but assumed to be damage from previous runs.





Semi-Validated Method from Literature

#### **Experimental Validation**

#### Comparison to the Zahorsky Data (Source 31)





# Comparison to the Zahorsky Data (Source 31)

| Run | Exp. Determined   | Predicted             | Δ Blowdown    |
|-----|-------------------|-----------------------|---------------|
|     | Blowdown          | Blowdown <sup>1</sup> | (Pred. – Exp) |
| 1   | 3.9%              | 4.0% (0.3 / 4.0)      | 0.1%          |
| 2   | 3.9%              | 5.6% (2.0 / 5.6)      | 1.7%          |
| 3   | 5.6%              | 9.7% (4.7 / 9.7)      | 4.1%          |
| 4   | 8.4% <sup>2</sup> | 16.7% (9.4 / 16.7)    | 8.3%          |
| 5   | 8.3%              | 12.6% (6.3 / 12.6)    | 4.3%          |
| 6   | 4.3%              | 5.3% (0.3 / 5.3)      | 1.0%          |

Note 1: The values are (Eq. 1.3 / Eq. 2.0) in percent.

2: The only case with agreement for Eq. 1.3





# **Recommendations For PERF-II**

- 1. Is increasing PSV blowdown enough?
- 2. How do pipe diameter changes affect stability...

 $R_{\pi} = \frac{(A_1 - A_2)^2}{(A_1 + A_2)^2} > \frac{2}{3}$ , Reflection for acoustic boundary

 $T_{\pi} = \frac{4A_1A_2}{(A_1+A_2)^2}$ , Transmission of acoustic losses

- 3. Do acoustic losses degrade with distance?
- 4. What is the opening time relevant to chatter?
- 5. Do the valves pop to XX% open?
- 6. Does backpressure affect chatter? For bellows?
- 7. This is generic, is it conservative enough?

