Relief Systems Design: Simplifying Assumptions Gone Wrong

Nicholas Cristea

Nicholas Cristea

- Graduated from St. Edwards University in Austin, Texas with a BS in Chemistry
- Graduated from the University of Texas at Austin with a MS in Chemical Engineering
- Has worked in Process Safety for 3 years
- Experienced in Relief Systems Analysis, Heat and Material Balance Generation, Concern Mitigation, and Flare Analysis
- Current role is as a Technical Lead

Overview

- Introduction
- Case 1 Fluid Catalytic Cracker Unit (FCCU)
- Case 2 Cat Feed Hydrotreater Reactor Train (CFHT)
- Conclusion

Introduction

- Simplifying conservative assumptions
- FCCU Slurry Pump around assumptions
 - Assume reactor effluent is relieved
 - Do a detailed analysis by modeling column
- CFHT Reactor Train assumptions
 - Individual relief devices need to be sized for the worst case
 - Global scenarios need to be realistic and make sure flare can handle the load
- What effects these assumptions may have

Assumptions - Cost Analysis

- Applying simplifying assumptions across the board could allow the work to be done quickly and cheaply
- Multiple relief devices and the flare would need to be mitigated
- The mitigated costs could be significantly diminished by doing a detailed analysis on the 5-10% of the systems that require it

What Does a FCC do?

Compressor Curves

Slurry Pump around

Partial loss of Slurry Pump around

Are the Pump arounds Lost?

Are the Overhead Cooling and Reflux Lost?

Does the Compressor Trip?

Total Loss of Slurry Pump around

FCCU - Summary

- The conservative assumption of the just relieving the reactor effluent may not be accurate
- The entire system needs to be modeled to understand how the system reacts.
- For the individual scenarios, the reactor effluent may be sufficient given the relief devices provide protection
- For the global analysis, the relief rate needs to be as accurate as possible

What Does a CFHT do?

Individual PSV Analysis

Global Analysis

Does Hydrogen go through PSV-01?

Does Hydrogen go though PSV-02?

Does Hydrogen go through Depressuring?

Where Does the Hydrogen Go?

Global Analysis

- Detailed analysis is needed for the global analysis
- Simplifying assumptions could cause the flare to be undersized
- Need to account for the hydrogen in the system only once

Scenario	Conservative Load	Detailed Analysis
Partial Power Failure	4,801,438 lb/hr	4,260,063 lb/hr
	836,708 SCFM	747,874 SCFM

Conclusion

- Simplifying assumptions help make the analysis go quicker
- Sometimes they result in undersized relief devices and a detailed analysis needs to be looked at
- Simplifying assumptions are helpful most of the time
- It is the engineer's responsibility to realize when detailed analysis is required
- Detailed analysis can save large sums of money, but the analysis will take longer
- There must be a balance between schedule and detailed analysis

Questions?