Pressure Relief Reaction Forces – The Importance of Evaluating Existing Installations

John Burgess | Smith & Burgess

GLOBAL RELIABILITY FORUM 2013

Hosted by Aramco Services Company

Agenda

- Installation Details
 - Inlet Piping Design
 - Piping Support
 - Administrative Controls
- Atmospheric Discharge
 - Dispersion Consideration
 - Liquids
 - Review SurroundingAreas

<u>Inlet Piping Design – General Good Practices</u>

- Limit the inlet line losses to 3%
 - Use full bore PSVs sparingly and knowingly
- Ensure relief valve accessibility for maintenance
- Ensure valves used for PSV isolation are full port
 - Consider gate valves instead of ball valves for PSV inlets/outlets
 - Audit the CSO/LO procedures
- Ensure the outlet piping is free draining
- Ensure that the outlet piping is supported
- Ensure that the valve is vertical
- Ensure that the valve disposition is
 - Pointed Up
 - At least 10' away from anything

Inlet Piping Design – Pressure Losses

Use of Full Bore Relief Valves

- Good Engineering Practice
 - Inlet losses > 3% of set
 - Valve Stable
- Manufacturers concerns
 - Valves may fail at ~ 7% to 10%
 - Capacity may suffer

These valves are not typical in downstream applications

Inlet Piping Design – Pressure Losses

The Piping Must Support the Reaction Forces

A chemical Plant was suffering from nozzle failures, so we reviewed 189 installations for structural adequacy.

Material	Allowable Stress B31.3 Table A-1 (psi)	Allowable Stress Occasional Load (psi)	Yield Stress B31.3 Table A-1 (psi)	Tensile Stress B3 I .3 Table A- I (psi)
A 234 (tee)	23,300	30,990	40,000	70,000
API 5L B (Pipe)	20,000	26,600	35,000	60,000
A105 (Flange)	21,900	29,130	36,000	70,000

The failure criteria used was 70% of the Yield Stress limit.

Inlet Piping Design – Pressure Losses

- Installations were modeled using both steady state and dynamic installation estimates.
- Caesar II v 5.3 was used to detail model ~ 15% of the valves.

Installation Type	# of installations	Requiring detailed analysis	Require Support
Typical	145	4	15
Complex	58	5	13
Total	189	9	28

⅓ of the valves required additional support, these were all API-526 Valves set below 500 psig.

Inlet Piping Design – Administrative Controls

Undersized

- In 15 years of doing this work I have never seen an undersized relief device causing a loss of containment.
- Vessel overpressure below hydrotest pressure typical
- MIDAS DB Search returns 0 Cases (Around 2000/2001)

Isolated

- Overpressure potentially limitless
- No capacity when isolated
- Personal experience / knowledge is ~10 Cases
- Seems to be increasing in frequency

A Case Study from the CSB.

- The rupture and release injured six employees.
- Operators closed an isolation valve between the heat exchanger shell (ammonia cooling side) and a relief Valve
- Maintenance workers replaced the rupture disk on that day; however, the closed isolation valve was not reopened.
- The pressure in the heat exchanger shell continued climbing until it violently ruptured

General Considerations

- Dispersion
 - Dispersion characteristics need to be considered
 - Most liquids should not be discharged to atmosphere
- Review Areas Surrounding Vents
 - Thermal Radiation Potential
 - Noise
 - Pollution Requirements

Dispersion Considerations - general

- Nothing within 10'
 - Electrical Area Classification Requirements
- Nothing within 120 diameters, for systems with:
 - Discharge point / PSV same diameter
 - Pop-Action PSVs
 - Limited Toxic Effects
 - MW < 50
- Toxic Considerations
 - 30:1 or 50:1 dilution @ 120 diameters
 - H₂S Concentrations above 0.5 mole fraction may dilute to above the IDLH (100 ppm)

Dispersion Considerations - Details

- Dispersion modeling required if the API guidance is not sufficient
 - High concentrations of toxics (over 50x the limit)
 - Heavy gases
 - Low discharge velocities.
- Next Two Slides show the effects of Exit Velocity
 - Blue is "Okay", between 10% and 50% of the LFL
 - Green "Concerning" between 50% of the LFL and the LFL
 - Yellow above the LFL and below the UFL
- High velocity discharge toxics may reach grade
 - ~500:1 dilution
 - H₂S Concentrations above 5% (molar) may exceed IDLH

Study Folder: BUTANE~1 Audit No: 1348 Model: PSV liquid Weather: Category 1.5/D Material: C3C4 Mix Averaging Time: Flammable(18.75 s) C/L Offset: 0 ft Concentration Time: 35.9202 s

0.10 LFL 0.001749 fractic

½ LFL 0.00874282 fractic

LFL 0.0174856 fraction

UFL 0.0927765 fraction

Study Folder: BUTANE~1 Audit No: 1348 Model: Stack liquid Weather: Category 1.5/D Material: C3C4 Mix Averaging Time: Flammable(18.75 s) C/L Offset: 0 ft Concentration Time: 315.975 s

0.10 LFL 0.001749 fractic
1/2 LFL 0.00874282 fractic
LFL 0.0174856 fraction
UFL 0.0927765 fraction

General Considerations

- Review Areas Surrounding Vents
 - Thermal Radiation Potential
 - Noise
 - Toxic Effects
 - Pollution Requirements
- Consider the following
 - Are vents in areas used often by personnel?
 - Are vents located near a property line?
 - If there were an emergency, could the vent block egress?
 - Is the other equipment in the vent system adequate?

