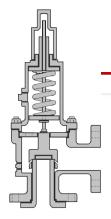
Perspectives from Experience


PSV Installation & Discharge More Critical than Sizing

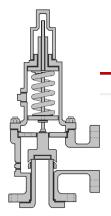
John Burgess, P.E. | Dustin Smith, P.E.

Overview

- Introduction
- Risk Assessments
- Types of Concern Mitigations
- Understanding the Problem
- Planning Ahead
- Case Studies
- Conclusion
- Questions

More critical than sizing

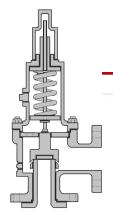
Agenda


Installation Details

- •Inlet Piping Design
- Piping Support
- Administrative Controls

Atmospheric Discharge

- Dispersion Consideration
- •Liquids
- •Review Surrounding Areas

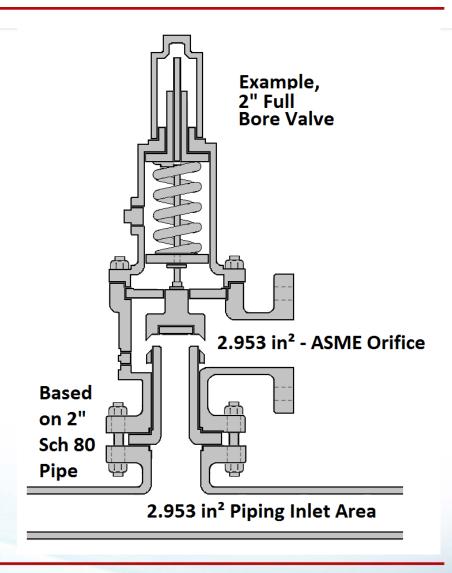

More critical than sizing

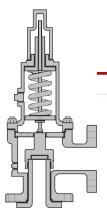
Installation Details

Inlet Piping Design – General Good Practices

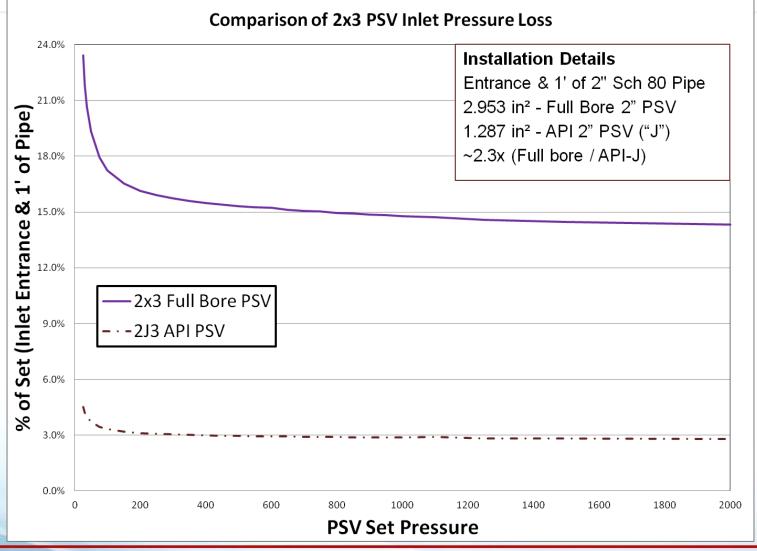
- •Limit the inlet line losses to 3%
 - Use full bore PSVs sparingly and knowingly
- •Ensure relief valve accessibility for maintenance
- •Ensure valves used for PSV isolation are full port
 - Consider gate valves instead of ball valves for PSV inlets/outlets
 - Audit the CSO/LO procedures
- Ensure the outlet piping is free draining
- Ensure that the outlet piping is supported
- Ensure that the valve is vertical
- Ensure that the valve disposition is
 - Pointed Up
 - At least 10' away from anything

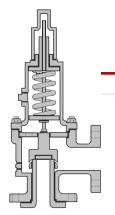
More critical than sizing


Installation Details


Inlet Piping Design – Pressure Losses

Use of Full Bore Relief Valves


- Good Engineering Practice
 - Inlet losses > 3% of set
 - Valve Stable
- Manufacturers concerns
 - Valves may fail at ~ 7% to 10%
 - Capacity may suffer

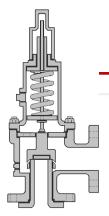

These valves are not typical in downstream applications

More critical than sizing

More critical than sizing

Installation Details

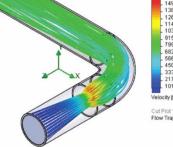
Inlet Piping Design – Pressure Losses

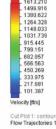

•The Piping Must Support the Reaction Forces

A chemical Plant was suffering from nozzle failures, so we reviewed 189 installations for structural adequacy.

			/	
Material	Allowable Stress B31.3 Table A-1 (psi)	Allowable Stress Occasional Load (psi)		Tensile Stress B3 I.3 Table A-I (psi)
A 234 (tee)	23,300	30,990	40,000	70,000
API 5L B (Pipe)	20,000	26,600	35,000	60,000
A105 (Flange)	21,900	29,130	36,000	70,000

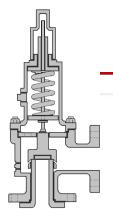
The failure criteria used was 70% of the Yield Stress limit.




More critical than sizing

Installation Details

Inlet Piping Design – Pressure Losses


- •Installations were modeled using both steady state and dynamic installation estimates.
- •Caesar II v 5.3 was used to detail model ~ 15% of the valves.

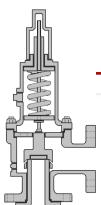
Installation Type	# of installations	Requiring detailed analysis	Require Support
Typical	145	4	15
Complex	58	5	13
Total	189	9	28

1/3 of the valves required additional support, these were all API-526 Valves set below 500 psig.

More critical than sizing

Installation Details

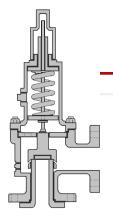
Inlet Piping Design – Administrative Controls


Undersized

- In 15 years of doing this work I have never seen an undersized relief device causing a loss of containment.
- Vessel overpressure below hydrotest pressure typical
- MIDAS DB Search returns 0 Cases (Around 2000/2001)

Isolated

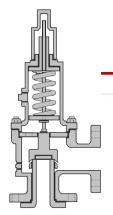
- Overpressure potentially limitless
- No capacity when isolated
- Personal experience / knowledge is ~10 Cases
- Seems to be increasing in frequency


More critical than sizing

Installation Details

A Case Study from the CSB..

- The rupture and release injured six employees.
- •operators closed an isolation valve between the heat exchanger shell (ammonia cooling side) and a relief Valve
- •Maintenance workers replaced the rupture disk on that day; however, the closed isolation valve was not reopened.
- •The pressure in the heat exchanger shell continued climbing until it violently ruptured

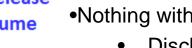


More critical than sizing

Atmospheric Discharge

General Considerations

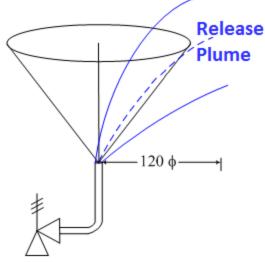
- Dispersion
 - dispersion characteristics need to be considered
 - Most liquids should not be discharged to atmosphere
- Review Areas Surrounding Vents
 - Thermal Radiation Potential
 - Noise
 - Pollution Requirements

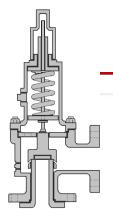


More critical than sizing

Atmospheric Discharge

Dispersion Considerations - general

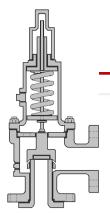

- Nothing within 10'
 - Electrical Area Classification Requirements



- •Nothing within 120 diameters, for systems with: Discharge point / PSV same diameter
 - Pop-Action PSVs
 - **Limited Toxic Effects**
 - MW < 50

Toxic Considerations

- 30:1 or 50:1 dilution @ 120 diameters
- H₂S Concentrations above 0.5 mole fraction may dilute to above the IDLH (100 ppm)

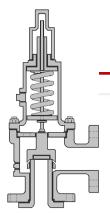

More critical than sizing

Atmospheric Discharge

Dispersion Considerations - Details

- Dispersion modeling required if the API guidance is not sufficient
 - High concentrations of toxics (over 50x the limit)
 - Heavy gases
 - Low discharge velocities.
- Next Two Slides show the effects of Exit Velocity
 - Blue is "Okay", between 10% and 50% of the LFL
 - Green "Concerning" between 50% of the LFL and the LFL
 - Yellow above the LFL and below the UFL
- high velocity discharge toxics may reach grade
 - ~500:1 dilution
 - H₂S Concentrations above 5% (molar) may exceed IDLH



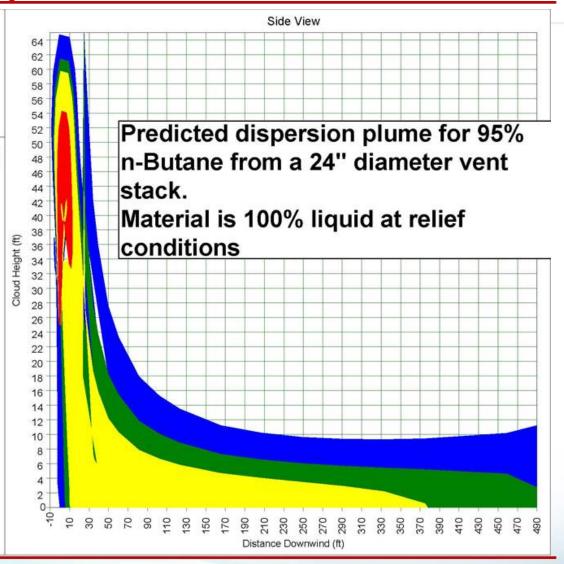


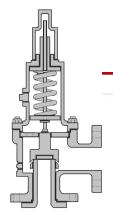
More critical than sizing

Study Folder: BUTANE~1 Audit No: 1348 Model: PSV liquid Weather: Category 1.5/D Material: C3C4 Mix Averaging Time: Flammable(18.75 s) C/L Offset: 0 ft Concentration Time: 35.9202 s

0.10 LFL 0.001749 fraction
1/2 LFL 0.00874282 fraction
1/2 LFL 0.0174856 fraction
1/2 UFL 0.0927765 fraction

More critical than sizing


Study Folder: BUTANE~1 Audit No: 1348 Model: Stack liquid Weather: Category 1.5/D Material: C3C4 Mix Averaging Time: Flammable(18.75 s) C/L Offset: 0 ft Concentration Time: 315.975 s


0.10 LFL 0.001749 fraction

½ LFL 0.00874282 fraction

LFL 0.0174856 fraction

UFL 0.0927765 fraction

More critical than sizing

Atmospheric Discharge

General Considerations

- •Review Areas Surrounding Vents
 - Thermal Radiation Potential
 - Noise
 - Toxic Effects
 - Pollution Requirements
- Consider the following
 - Are vents in areas used often by personnel?
 - Are vents located near a property line?
 - If there were an emergency, could the vent block egress?
 - Is the other equipment in the vent system adequate?

